inquiry
zostaw wiadomość
Jeśli jesteś zainteresowany naszymi produktami i chcesz poznać więcej szczegółów, zostaw wiadomość tutaj, a my odpowiemy tak szybko, jak to możliwe.
składać
Bengbu Longkai Welding Protection Technology Co.,Ltd.
Dom

spawalniczy respirator oczyszczający powietrze

spawalniczy respirator oczyszczający powietrze

  • PAPR Air Inlet Modes: Practical Differences & Selection Logic
    PAPR Air Inlet Modes: Practical Differences & Selection Logic
    Jan 16, 2026
      In air purification respirator application scenarios, most users focus more on filtration efficiency and protection level, but often overlook the potential impact of air inlet modes on actual operations. this article focuses on the differences of front, side and back air inlet modes in wearing adaptability, scenario compatibility, energy consumption control and special population adaptation from the perspective of on-site operational needs. The choice of air inlet mode is not only related to protection effect but also directly affects operational continuity, equipment loss rate and employees' acceptance of the equipment. Its importance becomes more prominent especially in scenarios with multiple working condition switches and long-term operations.   The core competitiveness of front air inlet PAPR lies in lightweight adaptation and emergency scenario compatibility, rather than simple air flow efficiency. This design concentrates the core air inlet and filter components in front of the head, with the overall equipment weight more concentrated and the center of gravity forward, adapting to most standard head shapes without additional adjustment of back or waist load, being more friendly to workers who are thin or have old back injuries. In emergency rescue, temporary inspection and other scenarios, the front air inlet PAPR has significant advantages in quick wearing; without cumbersome hose connection, it can be worn immediately after unpacking, gaining time for emergency disposal. However, potential shortcomings cannot be ignored: the forward center of gravity may cause neck soreness after long-term wearing, especially when used with safety helmets, the head load pressure is concentrated, making it unsuitable for continuous operations of more than 8 hours; at the same time, the front air inlet is easily blown back by breathing air flow, leading to moisture condensation on the surface of the filter unit, which is prone to mold growth in high-humidity environments, affecting filter service life and respiratory health.   The core advantage of side air inlet PAPR is multi-equipment coordination adaptability and air flow comfort, which is the key to its being the first choice for comprehensive working conditions. In industrial scenarios, workers often need to match safety helmets, goggles, communication equipment and other equipment. The arrangement of the side air inlet unit can avoid the equipment space in front of and on the top of the head, prevent mutual interference, and not affect the wearing stability of the safety helmet. Compared with the direct air flow of the front air inlet, the side air inlet can achieve "face-surrounding air supply" through a flow guide structure, with softer air flow speed, avoiding dryness caused by direct air flow to the nasal cavity and eyes, and greatly improving tolerance for long-term operations. Its limitations are mainly reflected in bilateral adaptability: single-side air inlet may lead to uneven head force, while double-side air inlet will increase equipment volume, which may collide with shoulder protective equipment and operating tools; in addition, the flow guide channel of the side air inlet unit is narrow; if the filtration precision of the filter unit is insufficient, impurities are likely to accumulate at the flow guide port, affecting air flow smoothness.   The core value of back air inlet papr air purifier lies in extreme working condition adaptation and equipment loss control, especially suitable for high-frequency and high-intensity operation scenarios. Integrating core components such as air inlet, power and battery into the back, only a lightweight hood and air supply hose are retained on the head, which not only completely frees up the head operation space but also avoids collision and wear of core components during operation, significantly reducing equipment maintenance and replacement costs. The weight of the back component is evenly distributed; matched with adjustable waist belt and shoulder straps, it can disperse the load to the whole body. Compared with front and side air inlets, it is more suitable for long-term and high-intensity operations. Moreover, the long back air flow path can be equipped with a simple heat dissipation structure to alleviate equipment overheating in high-temperature environments. However, this mode has certain requirements for the working environment: the back component is relatively large, unsuitable for narrow spaces, climbing operations and other scenarios; as the core connection part, if the hose material has insufficient toughness, it is prone to bending and aging during large limb movements, and dust is easy to accumulate on the inner wall of the hose, making daily cleaning more difficult than front and side air inlet equipment.   The core logic of selection is the adaptive unity of "human-machine-environment", rather than the optimal single performance. If the operation is mainly temporary inspection and emergency disposal with high personnel mobility, front air inlet PAPR should be preferred to balance wearing efficiency and lightweight needs; for regular industrial operations requiring multiple protective equipment and long operation time, side air inlet is the choice balancing comfort and coordination; for high-frequency, high-intensity operations with strict requirements on equipment loss control, back air inlet is more cost-effective. In addition, special factors should be considered: front air inlet should be avoided in high-humidity environments to prevent moisture condensation; back air inlet should be excluded in narrow space operations, and lightweight front or side air inlet should be preferred; for scenarios with high communication needs, side air inlet is easier to coordinate with communication equipment.   The iterative design of papr respirator air inlet modes is essentially the in-depth adaptation to operational scenario needs. From the initial front air inlet to meet basic protection, to the side air inlet balancing comfort and coordination, and then to the back air inlet adapting to extreme working conditions, each mode has its irreplaceable value. For enterprises, selection should not only focus on equipment parameters but also combine feedback from front-line workers and detailed differences of operation scenarios, so that PAPR can become an assistant to improve operational efficiency rather than a burden while ensuring safety. In the future, with the popularization of modular design, switchable air inlet modes may become mainstream, further breaking the scenario limitations of a single air inlet mode.If you want know more, please click www.newairsafety.com.
    CZYTAJ WIĘCEJ
  • Zaawansowana ochrona spawalnicza: spawanie MAG i konserwacja PAPR
    Zaawansowana ochrona spawalnicza: spawanie MAG i konserwacja PAPR
    Oct 15, 2025
    W części 1 omówiliśmy dopasowanie TIG/MIG-PAPR. Teraz zajmiemy się spawaniem MAG (Metal Active Gas Welding) – intensywnym procesem stosowanym w stalowych mostach i sprzęcie budowlanym. Wykorzystuje on mieszanki argonu i CO₂, generując 3–5 razy więcej oparów niż TIG, a także toksyczny CO i tlenki azotu. Podzielimy się również uniwersalnymi metodami. PAPR zasady zapewniające niezawodność ochrony.Spawanie MAG: „ciężkie zagrożenia” wymagają „wytrzymałych respiratorów PAPR”Potrójne zagrożenia MAG (duże stężenie oparów, toksyczne gazy, trudne warunki środowiskowe) wymagają stosowania PAPR z: Filtry kombinowane: HEPA dla pyłu + węgiel aktywny dla CO/NOₓ (istotne dla zamkniętych hal produkcyjnych);Maski z kapturem: Zakryj ramiona, aby zablokować wnikanie oparów unoszonych przez wiatr (kluczowe w przypadku prac wykonywanych na zewnątrz, np. prac na moście);Wytrzymała konstrukcja: Wentylatory odporne na wibracje (spawy MAG mocno wibrują) i wymienne akumulatory (do 8-godzinnej pracy na zewnątrz bez zasilania).Wybór uniwersalnego PAPR: 3 proste krokiNie wybieraj według marki ani ceny — postępuj zgodnie z tym: Rodzaj zagrożenia: TIG (gaz + lekki pył) → filtry podstawowe; MIG (ciężki pył + odpryski) → duży przepływ powietrza/odporne na odpryski; MAG (pył + toksyny) → filtry kombinowane + kaptury.Długość przesunięcia: ≤2 godziny → lekkie PAPR-y; ≥4 godziny → filtry o dużej pojemności/przepływ powietrza.Środowisko:Stacjonarne stacje wewnętrzne → stacjonarne PAPR; zewnętrzne/mobilne → przenośne modele zasilane bateryjnie.Konserwacja PAPR: Nie pozwól, aby sprzęt „po cichu się zepsuł”System Papr tracą skuteczność, jeśli się je zaniedba — oto, co należy zrobić: Wymień filtry: TIG (1–2 tygodnie), MIG (3–5 dni), MAG (codziennie, jeśli brudne); wymieniaj filtry węglowe co miesiąc lub jeśli czujesz opary.Sprawdź przepływ powietrza: Testuj co tydzień — TIG/MIG wymaga ≥150 l/min, MAG ≥180 l/min. W razie niskiego zapotrzebowania wyczyść wloty wentylatora sprężonym powietrzem.Pielęgnacja masek ochronnych: Po użyciu wytrzyj mgłę/olej; wymień folię przeciwmgielną, gdy ulegnie zarysowaniu (mgła ogranicza widoczność i bezpieczeństwo). Od TIG do MAG, respiratory PAPR działają najlepiej, gdy są dopasowane do zagrożeń i odpowiednio konserwowane. Dla spawaczy respirator z napędem sprężonego powietrza to nie tylko sprzęt — to pierwsza linia obrony dla długoterminowego zdrowia. Jeśli chcesz dowiedzieć się więcej, kliknij www.newairsafety.com.
    CZYTAJ WIĘCEJ
  • Podstawy bezpieczeństwa spawacza: TIG, MIG i jak chronią Cię aparaty PAPR
    Podstawy bezpieczeństwa spawacza: TIG, MIG i jak chronią Cię aparaty PAPR
    Oct 06, 2025
    Spawanie naraża pracowników na ukryte zagrożenia – opary metali, toksyczne gazy (takie jak ozon) i promieniowanie UV – które z czasem mogą powodować choroby płuc, gorączkę metaliczną, a nawet uszkodzenia skóry. Zwykłe maski są niewystarczające; Respiratory oczyszczające powietrze zasilane (PAPR) to przełomowe rozwiązania dzięki aktywnemu dopływowi powietrza, wysokowydajnej filtracji i pełnej ochronie twarzy. Ale papier do spawania Wybór zależy od metody spawania — oto jak je dopasować do metod TIG i MIG.Spawanie metodą TIG: precyzja wymaga „skoncentrowanej ochrony”Spawanie metodą TIG (spawanie elektrodą wolframową w osłonie gazów obojętnych) jest idealne do prac precyzyjnych (np. rur ze stali nierdzewnej), ale stwarza wyjątkowe zagrożenia: argon reaguje z łukiem elektrycznym, tworząc ozon, a zużyte elektrody wolframowe uwalniają szkodliwy dla płuc pył wolframu. Ponieważ spawacze TIG pracują blisko łuku elektrycznego, konieczne jest stosowanie aparatów PAPR. lekki i nieinwazyjnyWybierz nagłowne aparaty PAPR (poniżej 500 g) z odchylanymi osłonami twarzy z powłoką przeciwmgielną i odporną na zarysowania – chronią one oczy przed promieniowaniem UV, jednocześnie dostarczając przefiltrowane powietrze bezpośrednio do strefy oddychania. W przestrzeniach zamkniętych (np. we wnętrzach rur) aparaty PAPR redukują również lokalne gromadzenie się ozonu. Spawanie MIG: wydajność wymaga „ochrony o dużej wydajności”Spawanie metodą MIG (spawanie w osłonie gazów obojętnych) jest szybkie (stosowane do nadwozi samochodowych lub urządzeń), ale generuje 2–3 razy więcej oparów metalu (tlenku żelaza, manganu) niż spawanie metodą TIG. Spawanie ciągłe i gorące odpryski stanowią dodatkowe wyzwanie. Do spawania metodą MIG wybierz respiratory PAPR z: Wysoki przepływ powietrza (≥170 l/min) zapobiegający zatkaniu nosa podczas długich zmian;Filtry HEPA 13 (wyłapują 99,97% oparów o średnicy 0,3 μm);Osłony twarzy odporne na rozpryski (pokryte silikonem, blokującym krople stopionego płynu). Stacjonarne aparaty PAPR (zamontowane w pobliżu spawacza, podłączone za pomocą węży) najlepiej sprawdzają się na liniach montażowych — zmniejszają wagę spawacza i pozwalają na ośmiogodzinne zmiany bez konieczności wymiany filtrów.Następnie: spawanie MAG (najtrudniejszy proces) i respirator spawalniczy Porady dotyczące konserwacji, które pomogą utrzymać Twój sprzęt w dobrym stanie. Jeśli chcesz dowiedzieć się więcej, kliknij www.newairsafety.com.
    CZYTAJ WIĘCEJ
  • Wymagania dotyczące testów CE dla respiratorów z wymuszonym przepływem powietrza (PAPR)
    Wymagania dotyczące testów CE dla respiratorów z wymuszonym przepływem powietrza (PAPR)
    Jul 30, 2025
    Jeśli chodzi o środki ochrony osobistej (PPE) mające na celu ochronę pracowników przed szkodliwymi zanieczyszczeniami unoszącymi się w powietrzu, Respiratory oczyszczające powietrze z napędem (PAPR) wyróżniają się jako kluczowe narzędzia w branżach od produkcji po opiekę zdrowotną. Jednak aby te ratujące życie urządzenia mogły wejść na rynek europejski, muszą spełniać rygorystyczne wymogi certyfikacji CE. Przyjrzyjmy się kluczowym normom testowym i obowiązkom, które muszą znać producenci.​Zrozumienie ram regulacyjnych​ Po pierwsze, kluczowe jest określenie, gdzie w przepisach UE mieszczą się urządzenia PAPR. Jako urządzenia zaprojektowane do ochrony użytkowników przed zagrożeniami dla układu oddechowego – w tym pyłem, oparami i toksycznymi gazami – urządzenia PAPR są klasyfikowane jako ŚOI kategorii III zgodnie z rozporządzeniem (UE) 2016/425. Klasyfikacja ta dotyczy urządzeń wysokiego ryzyka, których awaria może spowodować poważne obrażenia lub śmierć, co oznacza, że zgodność z przepisami jest nie do negocjacji.​Środki ochrony indywidualnej kategorii III wymagają rygorystycznych testów i nadzoru ze strony Jednostki Notyfikowanej – organizacji akredytowanej przez UE, upoważnionej do weryfikacji zgodności. Samodzielne oświadczenie nie jest w tym przypadku wystarczające; walidacja przez stronę trzecią jest obowiązkowa. Podstawowe normy: EN 12941 i nowsze Podstawą testów CE dla respiratorów PAPR jest norma EN 12941:2001+A1:2009, europejska norma regulująca w szczególności kwestię wymuszonego przepływu powietrza w respiratorach. Norma ta określa kryteria dotyczące wydajności, bezpieczeństwa i konstrukcji, a dodatkowe normy dotyczą konkretnych komponentów, takich jak filtry i akumulatory. Przyjrzyjmy się bliżej kluczowym obszarom testowania:​1. Wydajność przepływu powietrza: zapewnienie niezawodnej ochrony​Podstawą funkcjonalności PAPR jest jego zdolność do dostarczania stałego dopływu przefiltrowanego powietrza. Testy koncentrują się na:​Minimalne natężenie przepływu powietrza: Dla półmasek minimalny przepływ wynosi 160 l/min; dla masek pełnotwarzowych 170 l/min. Natężenie przepływu musi pozostać stabilne z tolerancją 10% przez 30 minut ciągłej pracy.Utrzymywanie dodatniego ciśnienia: Respirator musi utrzymywać dodatnie ciśnienie (≥20 Pa) wewnątrz maski, aby zapobiec przedostawaniu się niefiltrowanego powietrza — nawet jeśli między maską a twarzą użytkownika występuje niewielka szczelina (10% nieszczelności).​Stabilność przepływu w zmiennych warunkach: testy symulują różną częstotliwość oddychania (od 15 oddechów/min w spoczynku do 40 oddechów/min podczas ciężkiej pracy), aby mieć pewność, że przepływ powietrza nie spadnie niebezpiecznie.​ 2. Skuteczność ochronna: blokowanie szkodliwych substancji​Podstawowym zadaniem PAPR jest filtrowanie zanieczyszczeń, dlatego testy sprawdzają zarówno szczelność urządzenia, jak i wydajność jego filtrów:​Badanie całkowitego przecieku: Używając aerozoli (takich jak chlorek sodu lub DOP), testerzy mierzą, ile niefiltrowanego powietrza przedostaje się do maski. Aby uzyskać najwyższy poziom ochrony, całkowity przeciek musi wynosić ≤0,05%.Zgodność filtrów: Filtry muszą spełniać normy takie jak EN 149 (dla filtrów cząstek stałych) lub EN 14387 (dla filtrów gazów/par). Na przykład filtr P100 musi wychwytywać ≥99,97% cząstek o średnicy 0,3 μm.​Integralność uszczelnienia: połączenie między filtrem a urządzeniem PAPR jest testowane pod kątem spadku ciśnienia — nie dopuszczając strat większych niż 50 Pa na minutę, aby wykluczyć możliwość obejścia.​ 3. Bezpieczeństwo mechaniczne i konstrukcyjne​Respiratory PAPR muszą być odporne na trudne warunki pracy, nie narażając przy tym użytkownika na niebezpieczeństwo:​Trwałość materiału: Komponenty, takie jak maski i węże, poddawane są ekstremalnym cyklom temperaturowym (od -30°C do +70°C) i działaniu promieni UV (72 godziny) w celu sprawdzenia, czy nie występują pęknięcia lub odkształcenia.​Badanie wytrzymałości: Paski, mocowania masek i połączenia filtrów muszą wytrzymywać siły rzędu 150 N (w przypadku pasków na głowę) i 50 N (w przypadku interfejsów filtrów) bez pękania.​Odporność na uderzenia: Soczewki masek pełnotwarzowych są testowane za pomocą stalowej kuli o masie 120 g zrzucanej z wysokości 1,3 metra, aby mieć pewność, że nie pękną.​4. Bezpieczeństwo elektryczne: Bezpieczne zasilanie​Ponieważ PAPR-y wykorzystują silniki i akumulatory, bezpieczeństwo elektryczne jest najważniejsze:​Izolacja i uziemienie: Silniki muszą wytrzymać napięcie prądu przemiennego 2500 V przez 1 minutę bez przebicia, a elementy metalowe muszą mieć rezystancję uziemienia ≤0,1Ω.​Wydajność akumulatora: Akumulatory (często litowo-jonowe) muszą przejść testy zgodne z normą EN 62133, obejmujące zwarcia, przeładowania i zgniecenia, bez ryzyka pożaru lub wybuchu. Muszą również zapewniać co najmniej 4 godziny pracy przy znamionowym przepływie prądu.Zgodność z normami EMC: Aby uniknąć zakłóceń ze strony narzędzi lub urządzeń radiowych, urządzenia PAPR muszą spełniać normy EN 61000 dotyczące kompatybilności elektromagnetycznej.5. Trwałość i adaptacja do środowiska​PAPR-y są zbudowane z myślą o długotrwałym użytkowaniu, dlatego testy gwarantują, że przetrwają próbę czasu:​Testy starzenia: Silniki pracują nieprzerwanie przez 500 godzin przy ≤10% utracie przepływu powietrza, podczas gdy akumulatory zachowują ≥80% pojemności po 300 cyklach ładowania.​Praca w ekstremalnych warunkach: Urządzenia muszą działać w temperaturze -30°C i 40°C/90% wilgotności powietrza, bez spadków przepływu powietrza i awarii elektrycznych.​Przypadki szczególne: dostosowywanie do unikalnych środowisk​Niektóre branże wymagają dodatkowych testów:​Zastosowania medyczne: Respiratory PAPR stosowane w opiece zdrowotnej muszą spełniać normę EN 14683 dotyczącą biokompatybilności (np. braku podrażnień skóry) i mogą wymagać powłok antybakteryjnych.​Środowiska zagrożone wybuchem: Do stosowania w strefach, w których występują gazy łatwopalne, PAPR wymagają certyfikatu ATEX (EN 13463) w celu zapobiegania iskrzeniu lub wyładowaniom statycznym. Badania CE dla najlepszy zasilany respirator oczyszczający powietrze Jest rygorystyczna, ale ma prosty cel: zapewnienie, że te urządzenia chronią użytkowników wtedy, gdy najbardziej tego potrzebują. Przestrzegając normy EN 12941 i powiązanych z nią norm, producenci nie tylko zyskują dostęp do rynku UE, ale także demonstrują zaangażowanie w bezpieczeństwo, które buduje zaufanie zarówno pracowników, jak i pracodawców.
    CZYTAJ WIĘCEJ
  • Aparaty oddechowe BXH-3001 PAPR (z zasilaniem oczyszczającym powietrze) firmy NEW AIR uzyskały certyfikat CE TH3 PR SL zgodnie z normą EN12941
    Aparaty oddechowe BXH-3001 PAPR (z zasilaniem oczyszczającym powietrze) firmy NEW AIR uzyskały certyfikat CE TH3 PR SL zgodnie z normą EN12941
    Jul 19, 2025
    Zrozumienie norm obowiązujących w nowym certyfikacie badania typu UE dla samolotu AIR BXH-3001Jeśli chodzi o środki ochrony indywidualnej (PPE), zwłaszcza aparaty oddechowe, przestrzeganie rygorystycznych norm jest nie do podważenia. NOWY AIR BXH-3001urządzenie do oczyszczania powietrza zasilane respiratorami Z samościemniającą przyłbicą spawalniczą stanowi wyraźny przykład tego, jak te normy zapewniają bezpieczeństwo i niezawodność. Przyjrzyjmy się kluczowym normom i przepisom, które stanowią podstawę tej certyfikacji. Podstawy regulacyjne: UE 2016/425Podstawą niniejszego certyfikatu jest Rozporządzenie (UE) 2016/425, kluczowe prawodawstwo regulujące kwestie ŚOI w Unii Europejskiej. Rozporządzenie to zastępuje starszą dyrektywę Rady 89/686/EWG i określa zasadnicze wymagania dotyczące zdrowia i bezpieczeństwa (EHSR) dla wszystkich ŚOI sprzedawanych w UE.Normy zharmonizowane: seria EN 12941Oprócz ogólnych przepisów BXH-3001 spełnia EN 12941 norma, a w szczególności jej zmiany:EN 12941:1998EN 12941:1998/A1:2003EN 12941:1998/A2:2008Normy te są zharmonizowane zgodnie z rozporządzeniem UE 2016/425, co oznacza, że uznaje się je za spełniające wymogi EHSR określone w tym rozporządzeniu. Norma EN 12941 koncentruje się na respirator zasilany oczyszczonym powietrzem które zawierają kask lub kaptur—dokładnie do tej kategorii należy BXH-3001.Kluczowe wymagania normy EN 12941 obejmują:Testowanie wydajności:Zapewnienie, że urządzenie skutecznie filtruje zanieczyszczenia (w tym przypadku aerozole stałe i ciekłe) i utrzymuje przepływ powietrza w różnych warunkach.Funkcje bezpieczeństwa:W tym trwałość materiałów, kompatybilność z kaskiem/kapturem i niezawodność układu napędowego (wentylatory, filtry itp.).Oznaczenia i instrukcje:Czytelne etykiety pomagają użytkownikom w prawidłowym użytkowaniu, konserwacji i ograniczeniach. Klasyfikacja: Kategoria III i ochrona TH3BXH-3001 jest klasyfikowany jako ŚOI kategorii III, najwyższa kategoria ryzyka zgodnie z rozporządzeniem UE 2016/425. Kategoria III obejmuje ŚOI przeznaczone do ochrony przed „poważnymi zagrożeniami”, takimi jak narażenie na szkodliwe aerozole podczas spawania lub w środowisku przemysłowym. Ta klasyfikacja wymaga ścisłej oceny zgodności, w tym badania typu (moduł B) i bieżących kontroli produkcji (moduł C2, zgodnie z opisem w certyfikacie).Ponadto urządzenie spełnia Wymagania klasy TH3Zgodnie z normą EN 12941, „TH” odnosi się do poziomu ochrony przed aerozolami, a TH3 oznacza wysoki poziom skuteczności filtracji. Potwierdza to, że BXH-3001 w połączeniu z filtrem cząstek stałych TH3 PR SL niezawodnie chroni użytkowników przed aerozolami stałymi i ciekłymi – krytycznymi podczas spawania i podobnych prac wysokiego ryzyka. Co to oznacza dla użytkowników i firmDla pracowników certyfikat ten jest gwarancją, że BXH-3001 system papierowy Produkt został niezależnie zweryfikowany pod kątem zgodności z deklaracją, nawet w wymagających warunkach. Zgodność z tymi normami zapewnia firmom dostęp do rynku w UE i buduje zaufanie do bezpieczeństwa produktów.Warto zauważyć, że znak CE na urządzeniu BXH-3001 (wraz z numerem jednostki notyfikowanej 1024, wymaganym dla środków ochrony indywidualnej kategorii III) to coś więcej niż tylko etykieta — to potwierdzenie zgodności z solidnymi ramami norm i przepisów.Podsumowując, Certyfikat Badania Typu UE dla NOWEGO AIR BXH-3001 opiera się na rygorystycznych normach: UE 2016/425 dotyczącej zgodności z przepisami, EN 12941 dotyczącej parametrów technicznych oraz jasnej klasyfikacji definiującej zakres ochrony. Dla każdego, kto korzysta z ochrony dróg oddechowych w warunkach wysokiego ryzyka, zrozumienie tych norm jest kluczem do wyboru odpowiedniego sprzętu.
    CZYTAJ WIĘCEJ

zostaw wiadomość

zostaw wiadomość
Jeśli jesteś zainteresowany naszymi produktami i chcesz poznać więcej szczegółów, zostaw wiadomość tutaj, a my odpowiemy tak szybko, jak to możliwe.
składać
KONTAKT: sales@txhyfh.com

Dom

Produkty

WhatsApp

Skontaktuj się z nami